## Implicit Function Theorem

Theorem 168. Let $U \subseteq \mathbb{R}^{n+1}$ be an open neighbourhood. Suppose $F(\mathbf{x}, y)$ is a $C^{1}$ function on $U$ and $(\mathbf{a}, b) \in U$ satisfies $F(\mathbf{a}, b)=0$. If $\partial_{y} F(\mathbf{a}, b) \neq 0$, then there exists an open set $V \subseteq \mathbb{R}^{n}$ together with a unique $C^{1}$ function $f: V \rightarrow \mathbb{R}$ such that $F(\mathbf{x}, f(\mathbf{x}))=0$ for all $x \in V$. Moreover, the derivative of $f$ is given by

$$
\partial_{x_{i}} f(\mathbf{x})=-\frac{\partial_{x_{i}} F(\mathbf{x}, y)}{\partial_{y} F(\mathbf{x}, y)} .
$$

1. Argue that you can find $r, \rho>0$ such that $F(\mathbf{x}, b-\rho)<0$ for all $x \in B_{r}(\mathbf{a})$ and $F(\mathbf{x}, b+\rho)>0$ for all $x \in B_{r}(\mathbf{a})$.
2. Use (1) to prove that for any fixed $\mathbf{x}_{0} \in B_{r}(\mathbf{a})$, there exists a unique point $y_{0} \in B_{\rho}(b)$ such that $F\left(\mathbf{x}_{0}, y_{0}\right)=0$. Define $f\left(\mathbf{x}_{0}\right)=y_{0}$.
3. For each $i \in\{1, \ldots, n\}$, let $k_{i}=f\left(\mathbf{x}_{0}+t \mathbf{e}_{i}\right)-f\left(\mathbf{x}_{0}\right)$ for some sufficiently small $t$, so that $y_{0}+k_{i}=f\left(\mathbf{x}_{0}+t \mathbf{e}_{i}\right)$. Argue that $F\left(\mathbf{x}_{0}+t \mathbf{e}_{i}, y_{0}+k\right)=F\left(\mathbf{x}_{0}, y_{0}\right)=0$ and apply the Mean Value Theorem. Re-arrange your result to show that $\partial_{i} f$ exists and is continuous.

Theorem 169. Let $U$ be an open subset of $\mathbb{R}^{n+k}$ and $\mathbf{F}: U \rightarrow \mathbb{R}^{k}$ be a $C^{1}$ function. Write $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ for the coordinates in $\mathbb{R}^{n+k}$. If ( $\mathbf{a}, \mathbf{b}$ ) satisfies $\mathbf{F}(\mathbf{a}, \mathbf{b})=\mathbf{0}$ and $B_{i j}=$ $\left(\partial_{y_{j}} F_{i}(\mathbf{a}, \mathbf{b})\right)_{i j}$ is invertible, there exists an open set $V \subseteq \mathbb{R}^{n}$ and a unique $C^{1}$ function $\mathbf{f}: V \rightarrow \mathbb{R}^{k}$ such that $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=0$ for all $\mathbf{x} \in V$.

Proceed by induction on the number of variables $\left(y_{1}, \ldots, y_{k}\right)$. The base case is Theorem 168, so assume the result holds in $k-1$ variables.

1. Suppose $B$ is an invertible matrix, and let $B_{i j}$ denote $B$ with the $i$ th row and $j$ th column deleted. Argue that there must be a $(k-1) \times(k-1)$ submatrix that is invertible. Argue that you can assume $B_{k k}$ is invertible.
2. Apply the induction hypothesis to write $\left(y_{1}, \ldots, y_{k-1}\right)=\mathbf{f}\left(\mathbf{x}, y_{k}\right)$ for some function $\mathbf{f}$.
3. Define $G\left(\mathbf{x}, y_{k}\right)=F_{k}\left(\mathbf{x}, \mathbf{f}\left(\mathbf{x}, y_{k}\right), y_{k}\right)$. Argue that it's sufficient to show that $\partial_{y_{k}} G\left(\mathbf{a}, b_{k}\right) \neq 0$.
4. The hard part is actually showing that $\partial_{y_{k}} G\left(\mathbf{a}, b_{k}\right) \neq 0$.
(a) Apply the chain rule to find a formula for $\partial_{y_{k}} G\left(\mathbf{x}, y_{k}\right)$.
(b) Differentiate the equation $F_{i}\left(\mathbf{x}, \mathbf{f}\left(\mathbf{x}, y_{k}\right), y_{k}\right)=0$ with respect to $y_{k}$. Solve this equation for $\partial_{y_{k}} f_{i}$ by using Cramer's Rule.
(c) Conclude that $\partial_{y_{k}} G\left(\mathbf{a}, b_{k}\right) \neq 0$.

Problem 170. Consider the non-linear system of equations:

$$
\begin{aligned}
& x u^{2}+y v^{2}=9 \\
& x v^{2}-y u^{2}=7
\end{aligned}
$$

Find conditions which guarantee that we can write $u$ and $v$ as functions of $x$ and $y$, and compute the partial derivatives of $u$ and $v$ with respect to these variables.

Theorem 171. Let $U, V \subseteq \mathbb{R}^{n}$ and fix some point $\mathbf{a} \in U$. If $\underset{\tilde{V}}{\mathbf{f}}: U \rightarrow V$ is of class $C^{1}$ and $D \tilde{\tilde{f}}(\mathbf{a})$ is invertible, then there exists neighbourhoods $\tilde{U} \subseteq U$ of $\mathbf{a}$ and $\tilde{V} \subseteq V$ of $\mathbf{f}(\mathbf{a})$ such that $\left.\mathbf{f}\right|_{\tilde{U}}: \tilde{U} \rightarrow \tilde{V}$ is bijective with $C^{1}$ inverse $\left(\left.\mathbf{f}\right|_{\tilde{U}}\right)^{-1}: \tilde{V} \rightarrow \tilde{U}$. Moreover, if $\mathbf{b}=\mathbf{f}(\mathbf{a})$ then the derivative of the inverse map is given by

$$
\left[D \mathbf{f}^{-1}\right](\mathbf{b})=[D \mathbf{f}(\mathbf{a})]^{-1} .
$$

Hint: Define a function $\mathbf{F}: U \times V \rightarrow \mathbb{R}^{n}$ by $\mathbf{F}(\mathbf{x}, \mathbf{y})=\mathbf{y}-\mathbf{f}(\mathbf{x})$.
Problem 172. If $U, V \subseteq \mathbb{R}^{n}$, a map $\mathbf{f}: U \rightarrow V$ is said to be a diffeomorphism if $\mathbf{f}$ is bijective and both $\mathbf{f}$ and $\mathbf{f}^{-1}$ are $C^{1}$.

1. Show that if $\mathbf{f}: U \rightarrow V$ is a $C^{1}$ homeomorphism such that $\operatorname{det} D \mathbf{f}(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in U$, then $\mathbf{f}$ is in fact a diffeomorphism.
2. Show that the requirement that $\operatorname{det} D \mathbf{f}(\mathbf{x}) \neq 0$ is necessary by giving an example of a $C^{1}$ homeomorphism which is not a diffeomorphism.

Problem 173. Define the set

$$
M_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

to be the set of $2 \times 2$ matrices. Define a map $g: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ by $g(A)=A^{2}$. Determine whether $g$ is invertible in a neighbourhood of $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

